BEN-DIMENSA
Mercerization Systems.
Precise Mercerization
15 opportunities for decisively improving the profitability of your operation

1. Less lye, water and steam consumption
2. Shorter downtimes and set-up times
3. Length and width gains
4. No pre- or post-stentering operations
5. No off width claims
6. Less 2nd quality dyed goods
7. More rational cutting of yarn-dyed fabric because of selvedge to middle consistency
8. Less resin treatment
9. Better dimensional stability
10. More level appearance; fuller touch
11. Lower space requirements
12. No expensive cooling for reaction heat
13. Up to 30% less lye, water and steam usage
14. Better finished width for a given residual shrinkage
15. Better length for a given finished width

You have 15 opportunities to decisively increase the profitability of your operations. And also exactly the same number of reasons to rethink your mercerizing process and to invest in a DIMENSA. With the DIMENSA you improve quality and simultaneously lower costs to an astounding degree.
Alongside lustre, colour and touch, dimensional stability is the most important objective of present day mercerization. These demands are possible with the DIMENSA which no other machine can provide. The length and width of the fabric can be influenced at will within the physical limits on the DIMENSA. This as a result of the combination “chainless positive guidance” and stenter frame.

The layout of the range can be seen in the fabric run diagram. The intensive impregnating zone is followed by the reaction zone. In this area fabric guidance is on the chainless principle. At the start of the stabilizing zone, that is immediately after the mercerizing section, there is a stenter section using the chain principle. Ultimate stabilization is in a conventional, highly effective stabilizing compartment with chainless guidance. The final section comprises a high-efficiency washing and neutralizing zone consisting of EXTRACTA, or TRIKOFLEX compartments.
Best dimensions after mercerizing

How do we define the mercerizing process?
There are two conditions that have to be met for wet-on-wet mercerizing:

- Lye content 200–240 grams NaOH per kg fabric
- Concentration of the entire liquid film 28 °Bé

Today the same demands are made on mercerizing for light as for heavy fabrics. Despite logistic difficulties, nowadays on account of price practically only the wet-on-wet process is practised. This imposes new demands on process engineering and machine design alike.

Impregnation/reaction zone
- With lightweight fabrics a high liquor exchange is attained, so that both limits are maintained (grams NaOH per kg fabric and °Bé) with a short impregnation zone.
- The same concentration is used with heavy fabrics, though excess caustic soda solution is made available to the cloth during the reaction phase. The fabric is repeatedly impregnated with caustic soda by additional spray pipes in the roll passages. Squeezing is effected by the weight of the rolls and the cloth tension. This ensures that both the concentration in the liquid film and the lye content satisfy the requirements.

Stabilization zone
With the classic DIMENSA concept the lye extraction process is initiated by intensive spraying with weak lye after the transfer compartment in the middle of the stenter frame. Heavy cloths are sprayed immediately following the stabilization compartment in the transfer compartment, i.e. preliminary lye extraction. In this way the same lye extraction levels are reached at the end of the stenter for light and heavyweight fabrics.
Intensive impregnation in hot lye

Investigations by Bechter reveal that with an impregnation concentration of 28–30 °Bé, or 250–300 g NaOH 100% per litre (215–240 g NaOH 100% per kg) there is no significant increase of iodine sorption or dyestuff uptake. This means optimal mercerization is accomplished with a concentration of 220–240 g NaOH 100% per kg cloth on the fabric.

With unchanged process lye concentration the combined impregnation and reaction compartment can be flooded or drained very quickly. That way optimal impregnation conditions can be provided by single impregnation for lightweight fabrics and double impregnation for heavy cloths, allowing mercerizing at the same speed. Our experience indicates a weight range around 250–300 g/m² for changing the impregnation conditions.

1 Liquor supply
2 Impregnating trough
3 Preparation tank with temperature and concentration

Faster caustic soda penetration, speedier swelling
High swelling uniformity, no ring mercerizing
Better dye penetration
Smoother cloth appearance
Softer handle

Shorter impregnation times
No cooling needed for mercerizing
Maximum squeezing action at infeed squeeze
Lower investment cost through shorter impregnation sections

Comparison hot-cold mercerisation.

■ Faster caustic soda penetration, speedier swelling
■ High swelling uniformity, no ring mercerizing
■ Better dye penetration
■ Smoother cloth appearance
■ Softer handle

■ Shorter impregnation times
■ No cooling needed for mercerizing
■ Maximum squeezing action at infeed squeeze
■ Lower investment cost through shorter impregnation sections
Short and hot ...

During hot impregnation the lye penetrates faster and more evenly into the yarn core. Swelling therefore does not take place only on the fabric surface. As compared with cold impregnation the swelling behaviour is considerably better and has a positive influence on the dimensional stability. The more uniform swelling gives, with dyed goods, a more equal appearance. With the wet-on-wet method the exchange factor is increased thus permitting a shorter impregnation zone than with conventional processes.

In addition, the lye volume is kept very low. The lye concentration is simple to control. The lye bath has been kept purposely small and under it there is one single lye tank integrated into the machine.

The process lye is continually circulated and the temperature and concentration monitored. The automatic lye control permits the addition of fresh lye, water or recovered lye of 20 to 40 °Bé from recycling.

Reaction heat is emitted when mixing the process lye. In hot mercerizing this is utilized, while in cold mercerizing it causes an energy consuming lye cooling process.

Squeezing to lower lye content is possible with hot mercerizing. The lower lye consumption provides savings in water and steam at lye extraction.

The versatility of the DIMENSA permits every textile result concerning the mercerizing effect. This is achieved by objective selection of the process parameters such as:

- Lye temperature
- Lye concentration
- Lye reaction time
- Fabric lengthwise and crosswise tension

The thus optimized process provides the best mercerizing effect with savings in lye, water and steam.

In comparison with other mercerizing ranges the small lye volume permits very fast changes in concentration and, therefore, short production interruptions. No lye losses occur at changes. Therefore change over to a lower lye concentration is profitable with the DIMENSA for the covering of immature cotton.

Savings of lye, washing water and steam are money for your account.
The reaction takes place during the dwell time

Instead of 45–50 seconds as with cold mercerizing, the same effect can be obtained in only 25–30 seconds with hot mercerizing. In order to keep width contraction as low as possible, the fabric is kept under constant tension during the reaction phase.

No selvedge to middle differences occur with the DIMENSA
In the retention compartment of the DIMENSA the proven chainless principle with lifting top rolls is employed. The retention compartment is not flooded.

On the DIMENSA MS the cloth is pinned onto the integrated stenter at the end of the retention compartment.

On the DIMENSA ML the retention zone consists of a chainless reaction compartment only.
An economic factor par excellence

It is common knowledge that the dimensions of cotton fabrics can be stabilized by the effects of caustic lye. The values decisive for the results are:

- The dimensions warp and weftwise
- The lye concentration on the fabric, and both at the moment when the fabric leaves the positive guidance at the end of the stabilizing zone. The residual shrinkage present at this point is memorized by the fabric and remains unchanged even after subsequent mechanical distortion

In the forefront of the requirements is usually the adherence to a given finished width with a given residual shrinkage after a wash test.

With optimum mercerizing and ideal fabric guidance values can be realized which can come up to shrinkage-free performance. This is the case on the DIMENSA.

With the classic DIMENSA concept, lye extraction is initiated by intensive spraying with weak lye after the conveyance compartment in the middle of the stenter.

Stabilizing zone

Lye extraction can be performed immediately following the stabilization process with heavy cloths.
DIMENSA memorizes the fabric dimensions

The uniformly applied lye is now to be removed. On the DIMENSA hot weak lye is first sprayed onto the fabric. In this manner the shrinking forces are partially decreased. In this condition the fabric can be stretched to the desired width with comparatively little force. Selvedge to middle differences are prevented or compensated by a special selvedge lye extraction process.

In the stenter frame an increase in the fabric width can also be very well achieved. Longitudinally the needle chain permits stretching by increasing the speed, or shrinking through fabric over-feed. The needle chain leaves no marks in the selvedge and guides the fabric accurately, even under the extreme conditions of high width tension and high shrinking forces.
Lye extraction on the stenter frame does not suffice to prevent subsequent shrinkage in the washing machine. When washing with free shrinkage, the opened spiral coils in the cotton fibres are partially closed causing irreversible dimensional changes. In order to suppress this effect and to carry-out-further lye extraction before entry into the washing compartment, Benninger has a further zone with permanent positive guidance after the stenter frame. Only completely opened spiral windings in the cotton fibre lead to the acknowledged improvement in dimensional stability, tenacity, lustre, etc.

At the end of the stabilizing operation the caustic soda concentration has been so far reduced that no further permanent changes occur. The molecular changes in the morphological structure in warp and weft at the end of the stabilizing zone are memorized. In subsequent finishing operations such as stentering, dyeing and washing the dimensions are not irreversibly influenced.

Any residual alkali is now washed out in the washing machine. Depending on the fabric elasticity the EXTRACTA roller vat or the TRIKOFLEX drum washing machine is used to prevent longitudinal distortion and width contraction.

The amount of washing water is economical and objectively controlled by measuring the weak lye concentration at the fabric infeed in the stabilizing zone (stenter frame or chainless stabilizing compartment). Exact neutralization of the fabric is ensured through automatic pH control.
DIMENSA enhances the fabric appearance and the quality

Further positive features of tensioned mercerizing are:
- Orderly orientation in the crystal areas
- Removal of fibre unevenness
- Increasing the number of micropores
- Unification of the pore size

And from these result:
- Better residual moisture
- Better lustre
- Better dyeing behaviour with an increased dyestuff yield
- Better handle
- Coverage of immature cotton

The use of hot lye in the DIMENSA is important for more level and uniform dyeing results. With this method a more consistent wetting and swelling is achieved, without the use of auxiliary chemicals. Only the patented DIMENSA mercerizing process fully utilizes the action of the alkali treatment on cotton.

Mercerizing processes which permit partial or full free shrinkage in the reaction and stabilizing zones also provide an improvement in the dyeing behavior, but do not provide optimum exploitation of the potential for dimensional stability, tenacity and lustre. Mercerization with the DIMENSA encompasses all possible improvements of these properties.
Profit from the advantages of the DIMENSA

Test a shirt or blouse. In yarn dyed fabrics selvedge-middle differences become conspicuous faults when poorly cut. You do not have this problem with the DIMENSA.

Width gain and high dimensional stability are compatible on the DIMENSA
You achieve a bigger finished width. In spite of that, the quality standard of the shrinkage value is not impaired. On the contrary, through the width stretching in the stentering frame and the subsequent excellent stabilizing, a distinctly better stabilized width is achieved than on conventional mercerizing machines. The relationship of finished width to shrinkage in the weft direction is clearly improved.

Constant warp density over the whole fabric width
An increased number of ends in the selvedge zone leads to pattern distortion in yarn dyed fabrics, and in dyed fabrics to side-to-centre shading. With the DIMENSA denser selvedges are avoided. In spite of the gain in width the mass per unit area does not proportionally diminish as mainly the denser selvedges are equalized.

The DIMENSA fulfils textile producers’ wishes.

Traditional mercerizing results with selvedge thickening and deviations in weight per unit area. DIMENSA corrects irregularities caused by processing and increases the stabilized fabric width.
Section Control

This newly developed innovation is a mechanical selvedge stretching unit integrated into the machine concept of the DIMENSA.

With the section control an instrument is available that effectively prevents selvedge thickening on woven and knitwear.

No more incorrect dimensions

Fabrics can be contracted or stretched. Compared with conventional mercerization, the shrinkage values are substantially better.

In order that no fabric destroying tensions are created, it is important to set a length or width gain. The fabric tension has a positive influence on the mercerizing process in that the opening of the spiral windings in the cotton fibres is increased. Even as fibre contraction occurs when mercerizing, the tension leads, in the end, to lengthening. According to requirements this can be achieved in the warp or weft direction on the DIMENSA.

Selvedge lye extraction to correct edge thickening.
DIMENSA predestined for automation

Elegant strong lye management
The short impregnation compartment results in a low liquor volume. With the DIMENSA, neither topping-up nor storage tanks are necessary. Temperature and concentration are preselected at the control panel, automatically prepared and held constant during production by the control system. It is quite possible to supply the strong lye and the liquor for diluting with differing concentrations. Increases in lye volume as a result of changes in concentration are collected in the preparation tank under the impregnating trough. Changes are possible within a few minutes.

Constant fabric speed, constant lengthwise tension
The drive is automatically kept at a constant fabric speed and constant lengthwise tension. In the standard model the lengthwise tension control is over oscillating rolls, but at the entry to the stenter zone by means of ratio-metering. On request and with knitted goods only ratio-metering is foreseen.

Automatic control of the weak lye concentration
Usually only a part of the weak lye can be used in the preparation of the strong lye and in bleaching. Instead of delivering the excess to drain, it can, as an economical solution, be evaporated.

Because of the special configuration of the stabilizing zone on the DIMENSA, a weak lye concentration of 6–10 °Bé can be achieved, which is very favourable for evaporation, without reducing the lye extracting effect. Practice has shown that 75–80% of the strong lye needed can be recovered from the weak lye.

Reproducible effects
Through the high degree of automation, all parameters which influence the fabric appearance such as reaction times, bath temperatures and concentration, fabric length, fabric width, etc., are constant and reproducible. Thus any treatment effect which has been achieved once can be reproduced without any trouble whatsoever.

High degree of automation, simple operation
The DIMENSA concept provides very good requisites for automation. Benninger can automate the range to any degree. The decisive factor are the customer’s requirements. All important data can be set and monitored on a central control panel or CRT screen.

Schematic of automatic strong lye control

A. Processor
B. Impregnation trough
C. Preparation tank
D. Heating
E. Concentration measuring vessel
F. Temperature feeler
G. Level measuring feeler
The Swiss company Benninger has been the textile industry's leading partner across the globe for one hundred and fifty years with global branches and service representatives. Benninger develops and manufactures textile finishing and cord production ranges as well as providing complete system solutions. As the market leader Benninger will continue to rely on its comprehensive process know-how in order to be able to offer high-quality installations with excellent customer service.

Benninger AG
9240 Uzwil, Switzerland
T +41 71 955 85 85
F +41 71 955 87 47
benswiss@benningergroup.com

Benninger Zell GmbH
Schopfheimerstrasse 89
79669 Zell i.W., Germany
T +49 7625 131 0
F +49 7625 131 298
bengermany@benningergroup.com

Benninger Zittau
Küsters Textile GmbH
Gerhart-Hauptmann-Strasse 15
02763 Zittau, Germany
T +49 3583 83 0
F +49 3583 83 303
kt@kuesters-textile.com

Benninger AG
Moscow Office
Leningradsky pr-t 72
Bld. 4, Office 802
125315 Moscow, Russia
T +7 495 721 18 99
F +7 495 721 30 84
benrussia@benningergroup.com

Benninger India Ltd.
415/416 & 417
Sunshine Plaza
Dadar (East)
Mumbai 400 014, India
T +91 22 4322 7600
F +91 22 4322 7601
benindia@benningergroup.com

Benninger Textile Machinery Co. Ltd.
Room 904, Tower A
City Center of Shanghai
100 Zun Yi Road
Shanghai 200051, P.R. China
T +86 21 6237 1908
F +86 21 6237 1909
benchina@benningergroup.com